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Ages and age spreads in young stellar clusters
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Abstract. I review progress towards understanding the timescales of star and cluster formation
and of the absolute ages of young stars. I focus in particular on the areas in which Francesco
Palla made highly significant contributions — interpretation of the Hertzsprung-Russell dia-
grams of young clusters and the role of photospheric lithium as an age diagnostic.
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1. Introduction

Estimating the absolute ages of young stars
and ascertaining the extent of age spreads in
young clusters is crucial in understanding the
mechanisms and timescales upon which stars
form, upon which circumstellar disks disperse
and planetary systems assemble, and for under-
standing the role of varying stellar birth envi-
ronments on these issues. Francesco Palla pro-
duced highly influential work in these areas;
my review focuses on two key aspects: (i) the
interpretation of the Hertzsprung-Russell dia-
grams (HRDs) and colour-magnitude diagrams
(CMDs) of young clusters and star forming re-
gions (Palla & Stahler[1999, 2000 2002), and
(ii) the use of photospheric lithium abundance
measurements as an orthogonal method to es-
timate and calibrate young stellar ages (Palla
et al.|2005, 12007 ISacco et al.|[2007).

2. Ages from H-R diagrams

Low-mass stars (< 2M,,) take significant time
(~ 10-200 Myr) to evolve from newly revealed
T-Tauri stars to the zero-age-main-sequence

(ZAMS). This pre-main-sequence (PMS) evo-
lution occurs on mass-dependent timescales
(faster for higher mass stars); stars initially
descend fully convective Hayashi tracks fol-
lowed by, for higher mass objects (> 0.4M;),
the development of radiative cores and a blue-
ward traverse along the Henyey track before
settling onto the ZAMS (e.g. [Iben/ [1965). In
principle, the construction of grids of mass-
dependent evolutionary tracks and correspond-
ing isochrones in the HRD can be used with
estimates of luminosity and effective temper-
ature (7.g) or equivalently (given appropri-
ate bolometric corrections), absolute magni-
tude and colour, to yield ages and masses for
PMS stars. An advantage to using low-mass
stars when studying young clusters, rather than
their higher mass siblings, is they are much
more populous, allowing statistical analyses,
and their movement in the HRD can be much
larger for a given age change.

In a series of papers, Francesco (and Steven
Stahler) noted that, when plotted on the HRD,
stars are dispersed around the single isochrones
predicted by PMS models. This indicated a
substantial age spread of at least a few Myr,
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and in some cases > 10 Myr. The pattern
was repeated in several young clusters and
when ages inferred from HRD position were
turned into a star formation history, suggested
an accelerating star formation rate as a func-
tion of (linear) time. This highly-cited result
has launched a thousand telescope proposals
and is still hotly debated. Does an extended
star formation history indicate inefficient star
formation moderated by turbulence and mag-
netic fields, or can the spreads be explained by
observational uncertainties and problems with
PMS models so that actually, star formation is
rapid and efficient, taking place on dynamical
timescales?

Opponents of the idea of large age spreads
have pointed to the role of astrophysical ef-
fects and observational uncertainties in scatter-
ing stars in the HRD, giving the impression of
a large age dispersion. [Hartmann| (2001) noted
that the apparent age distribution was lognor-
mal, with o ~ 0.4 dex, perhaps reflecting
the logarithmic nature of uncertainties in lu-
minosity estimates and that age « L73/? on
Hayashi tracks. There are uncertainties in dis-
tance, extinction, and also due to intrinsic vari-
ability, accretion and the presence of binaries
that must certainly be accounted for in estimat-
ing a true age dispersion. Detailed simulations
by Reggiani et al.| (2011) and [Preibischl (2012}
concluded that whilst these effects were impor-
tant, they probably do not explain the entire ex-
tent of observed dispersions.

It seems certain that the very old ages as-
signed to at least some PMS stars in young
clusters are due to mis-estimated luminosi-
ties and temperatures associated with an in-
correct or at least incomplete treatment of ex-
tinction and accretion (Manara et al. [2013)).
On the other hand, support for genuine disper-
sions in luminosity (or radius at a given Teg)
has been found by considering the distribution
of projected radii (rotation period multiplied
by projected rotation velocity) in the Orion
Nebula cluster (ONC) and IC 348 (Jefiries
2007; [Cottaar et al.2014) and from the IN-
SYNC APOGEE survey that finds a significant
correlation between increasing age and spec-
troscopic gravity in the same clusters (Cottaar
et al.|2014; Da Rio et al.[2016)).
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There seems little doubt that a fraction of
the observed age dispersion must be due to
sources of astrophysical and observational un-
certainty, but also strong evidence that at least
some of the luminosity and radius spread is
real. Whether this implies genuine age spreads
requires evidence from other observations and
independent astrophysics.

3. Lithium as an age indicator

Lithium is ephemeral in low-mass stellar pho-
tospheres. As PMS stars contract, their cores
reach Li-burning temperatures before reach-
ing the ZAMS. If the convection zone base is
also above the Li-burning temperature (which
it would be in fully convective stars) then pho-
tospheric Li is also depleted on timescales less
than a few Myr. The age at which core Li burn-
ing begins is mass-dependent (later for lower
mass stars), but the development of a radiative
core can arrest photospheric Li depletion in
more massive objects. These phenomena lead
to a complex, but age-dependent, behaviour for
Li abundance as a function of luminosity, Teg
or colour.

Palla et al. (2005, 2007) were among the
first to suggest Li depletion could serve as an
independent test of ages in very young low-
mass stars. Li depletion is expected to be-
gin in stars of ~ 0.5M at an age of about
5 Myr and subsequently develops at higher and
lower masses. Since the physics of Li deple-
tion is comparatively simple, it has been argued
that this currently provides the least model-
dependent means of estimating young stellar
ages (e.g. Soderblom et al.| 2014), however
masses cannot be measured directly so one re-
lies on colours, 7. or (better) luminosities as
proxies.

Palla et al. (2005) and Sacco et al. (2007)
found examples of Li-depleted low-mass stars
that appeared older than 10 Myr in the ONC
and the o Ori cluster, and much older than
the bulk of their siblings, perhaps supporting
the notion of large age spreads > 10 Myr.
Subsequent work by |Sergison et al.| (2013) on
the ONC and NGC 2264 confirmed the pres-
ence of a dispersion in Li abundance, but noted
the difficulty in assessing Li abundances for
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PMS stars that are often accreting. Any veiling
continuum weakens the Li1 6708A line that is
exclusively used; this combined with the satu-
rated nature of this strong resonance line can
lead to the mistaken inference of significant Li
depletion. [Lim et al.| (2016) took the expedi-
ent option of excluding stars with signs of ac-
cretion from their analysis (which one might
presume were younger stars), still finding ev-
idence for some age dispersion in NGC 2264,
but with an absolute value < 4 Myr and smaller
than the spread implied by the HRD.

Taken at face value, the combined informa-
tion from Li depletion, the HRD and spectro-
scopic indicators of radii suggests that some
dispersion in age is present, but probably no
more than a few Myr and not as much as
suggested by the HRD alone. However, there
are problems that have emerged even with this
simple interpretation that may betray interest-
ing facets of PMS evolution that have yet to be
correctly incorporated.

4. Problems with evolutionary models

(1) Why is Li depletion correlated with ro-
tation? That rapidly rotating low-mass
stars appear to preserve their Li longer,
has been established in older clusters
and becomes clearer with better data
(Barrado et al.|2016)). This trend is now
becoming apparent at even younger ages
and may be responsible for some of the Li
depletion dispersion previously claimed
to be associated with an age spread
(Bouvier et al.l 2016). Since PMS stars
are expected to spin-up as they contract,
then older stars ought to be faster rotating
and more Li depleted if the age dispersion
were genuine.

(ii)) Why do Li-depletion ages disagree with
isochronal ages from the HRD? \Jefiries
et al.| (2017) have pointed out that Li
depletion ages and HRD/CMD ages are
not completely independent; Li depletion
takes places when the core temperature,
and hence mass to radius ratio, reaches
a certain threshold, whilst HRD/CMD
ages also depend on radius at a given
T, though not as sensitively. The same
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evolutionary models give significantly
younger ages for low-mass PMS stars in
the y? Velorum cluster than implied by
the strong Li depletion seen in its M-
dwarfs. The Li depletion also takes place
at much redder colours and lower in-
ferred Teq than expected. The CMD and
Li-depletion pattern cannot be explained
simultaneously by any commonly used
evolutionary codes at any age.

Why are more massive stars in young
clusters judged to be older than the
low-mass stars? The ages of clusters
with PMS stars can also be estimated
by looking at how far from the ZAMS
towards the terminal-age main-sequence
their high mass (> 5M;) stars have
progressed. When done with a self-
consistent and accurate treatment of red-
dening [Naylor| (2009) suggested that the
high-mass stars were significantly older
than their low-mass siblings by a factor of
two. This was followed-up with a larger
sample by|Bell et al.|(2013)), who demon-
strated that the low-mass ages could be
brought into agreement with the high-
mass ages (and ages from Li depletion)
with systematic changes in the bolomet-
ric corrections adopted by the models.
Why do current models fail to correctly
predict the location of PMS eclipsing bi-
nary components in the HRD? New ex-
amples found in star forming regions pro-
vide challenges to evolutionary models.
Their masses and radii are not well pre-
dicted from their estimated luminosities
and Teg (Kraus et al. 2015} [David et al.
2016). The PMS binary components ap-
pear colder than predicted by the models
and more luminous than predicted at the
age of higher mass stars in the same clus-
ters.

(iii)

@iv)

These problems have lead to considera-
tion of whether PMS evolutionary models are
yielding the correct absolute masses, ages and
hence age spreads at all. An idea that has
gained some traction is that episodic accretion
during the first million years of a star’s life can
significantly influence both the HRD position
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Fig. 1. The effects of 10% inflation due to magnetic activity. The left hand panel shows isochrones in the
HRD from Baraffe et al. (2015) at 7.5 (diamonds) and 19 Myr (squares). The dashed lines show the same
isochrones modified for the effects of radius inflation. Mass points from 0.2M to 0.8 M, in 0.1M,, steps
are indicated by open symbols on each isochrone. The dotted lines indicate the movement of a star of a
given mass due to radius inflation. Note how an inflated 19 Myr isochrone lies almost on top of the 7.5 Myr
uninflated isochrone. The right hand panel is similar but shows the effects of radius inflation on the expected
level of Li depletion. These diagrams (adapted from Jeffries et al. 2017 by R. Jackson priv. comm.) illustrate
that radius inflation acts to reduce luminosity, lower T and decrease Li depletion for a star of a given mass

and age.

and Li depletion (Baratte & Chabrier| 2Z010;
Baraffe et al|2017). Variations in accretion rate
and the exact timing of accretion could lead to
apparent age dispersions and to the occasional
star appearing much older in the HRD and/or
exhibiting significant Li depletion.

An alternative that is also gaining support
is that magnetic activity may “inflate” low-
mass stars (or at least slow their contraction),
either through magnetic inhibition of convec-
tion (Muilan & MacDonaid| 2001] Feiden &
Chaboyer| 2014) or the blocking of radiative
flux by cool starspots (Fackson & Jeffries 2014
Somers & Pinsonneauit| 20i5a). These ideas
have the attraction that we know young low-
mass stars are magnetically active and that
they have extensive starspot coverage (some
recent spectroscopic estimates suggest more
than 50%, Guily-Santiagoetal|2017).

Let us suppose then that active low-mass
PMS stars are inflated by ~ 10% compared
to the predictions of “standard” evolutionary

models at a given mass and age. This is roughly
the level suggested by recent modelling work
that attempts to incorporate the effects of sup-
pressed convection or starspots. Jeffries et al.
(2017) (see also Feiden |2016; IViessina et al.
2016) have shown that such stars become
cooler and only slightly less luminous. The net
result is that stars move almost horizontally in
the HRD resulting in severely underestimated
ages and masses when using “standard” mod-
els (see Fig. 1). At the same time their core
temperatures are reduced, delaying the onset of
Li depletion and decreasing the T4 of stars in
which Li depletion is first seen.

If magnetic models such as those of
Jackson & Jeffries (2014), S$Somers &
Pimsonmeauit] (2015b) or Feiden (2016)
are adopted, then HRD/CMD ages are brought
into much closer agreement with the Li
depletion ages, but at the expense of dou-
bling the ages inferred from the HRD (see
Fig. 1). This also brings ages from low-mass
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and high-mass stars into broad agreement,
potentially solves the problems with eclipsing
binary parameters (MacDonald & Mullan
2017) and could introduce a dispersion into
the HRD and Li-depletion patterns of young
stars that is correlated with rotation and/or
magnetic activity (Somers & Pinsonneault
2015b). If correct, such a large shift has
considerable implications for the timescales of
PMS evolution, the dispersal of circumstellar
matter and hence the time available to form
planetary systems, all of which are keyed-in
to the absolute timescales set by age estimates
for young, low-mass stars.

5. Summary

The investigation of ages and age spreads
in young clusters using the HRD and Li-
depletion, begun by Francesco Palla and col-
leagues, remains a vibrant and controver-
sial topic. Current evidence suggests that age
spreads are a lot smaller than 10 Myr (within a
single cluster), but that not all the dispersion
in cluster HRD/CMDs and Li depletion can
be explained by observational and astrophysi-
cal uncertainties. Some of the observed spread
does appear to be due to a genuine distribu-
tion of radius among stars with similar T.g and
mass, which might be attributable to a modest
age spread of a few Myr. We are now moving
into an era of more sophisticated stellar mod-
elling that questions the veracity of both the ab-
solute ages of PMS stars and the inferred age
spreads in young star forming regions.

References

Baraffe, I. & Chabrier, G. 2010, A&A, 521,
Ad4

Baraffe, L., et al. 2015, A&A, 577, A42

Baraffe, I, et al. 2017, A&A, 597, A19

Barrado, D., Bouy, H., Bouvier, J., et al. 2016,
A&A, 596, A113

Bell, C. P. M., et al. 2013, MNRAS, 434, 806

Bouvier, J., Lanzafame, A. C., Venuti, L., et al.
2016, A&A, 590, A78

Cottaar, M., Covey, K. R., Meyer, M. R., et al.
2014, AplJ, 794, 125

641

DaRio, N., Tan, J. C., Covey, K. R., et al. 2016,
ApJ, 818, 59

David, T. J., et al. 2016, ApJ, 816, 21

Feiden, G. A. 2016, A&A, 593, A99

Feiden, G. A. & Chaboyer, B. 2014, ApJ, 789,
53

Gully-Santiago, M. A., Herczeg, G. J.,
Czekala, L., et al. 2017, ApJ, 836, 200

Hartmann, L. 2001, AJ, 121, 1030

Iben, Jr., I. 1965, ApJ, 141, 993

Jackson, R. J. & Jeffries, R. D. 2014, MNRAS,
441, 2111

Jeffries, R. D. 2007, MNRAS, 381, 1169

Jeffries, R. D., Jackson, R. J., Franciosini, E.,
et al. 2017, MNRAS, 464, 1456

Kraus, A. L., Cody, A. M., Covey, K. R., et al.
2015, ApJ, 807, 3

Lim, B., Sung, H., Kim, J. S., et al. 2016, ApJ,
831,116

MacDonald, J. & Mullan, D.J. 2017, ApJ, 834,
67

Manara, C. E., Beccari, G., Da Rio, N., et al.
2013, A&A, 558, Al14

Messina, S., Lanzafame, A. C., Feiden, G. A.,
et al. 2016, A&A, 596, A29

Mullan, D. J. & MacDonald, J. 2001, ApJ, 559,
353

Naylor, T. 2009, MNRAS, 399, 432

Palla, F,, et al. 2005, ApJ, 626, .49

Palla, F, et al. 2007, ApJ, 659, L41

Palla, F. & Stahler, S. W. 1999, ApJ, 525, 772

Palla, F. & Stahler, S. W. 2000, ApJ, 540, 255

Palla, F. & Stahler, S. W. 2002, ApJ, 581, 1194

Preibisch, T. 2012, Research in Astronomy and
Astrophysics, 12, 1

Reggiani, M., Robberto, M., Da Rio, N., et al.
2011, A&A, 534, A83

Sacco, G. G, et al. 2007, A&A, 462, 1.23

Sergison, D. J., et al. 2013, MNRAS, 434, 966

Soderblom, D. R., et al. 2014, in Protostars and
Planets VI, ed. H. Beuther, R. S. Klessen,
C. P. Dullemond, T. Henning (Univ. Arizona
Press, Tucson), 219

Somers, G. & Pinsonneault, M. H. 2015a, ApJ,
807, 174

Somers, G. & Pinsonneault, M. H. 2015b,
MNRAS, 449, 4131



	Introduction
	Ages from H-R diagrams
	Lithium as an age indicator
	Problems with evolutionary models
	Summary

